Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Cheminform ; 15(1): 47, 2023 Apr 17.
Article in English | MEDLINE | ID: covidwho-2293809

ABSTRACT

INTRODUCTION AND METHODOLOGY: Pairs of similar compounds that only differ by a small structural modification but exhibit a large difference in their binding affinity for a given target are known as activity cliffs (ACs). It has been hypothesised that QSAR models struggle to predict ACs and that ACs thus form a major source of prediction error. However, the AC-prediction power of modern QSAR methods and its quantitative relationship to general QSAR-prediction performance is still underexplored. We systematically construct nine distinct QSAR models by combining three molecular representation methods (extended-connectivity fingerprints, physicochemical-descriptor vectors and graph isomorphism networks) with three regression techniques (random forests, k-nearest neighbours and multilayer perceptrons); we then use each resulting model to classify pairs of similar compounds as ACs or non-ACs and to predict the activities of individual molecules in three case studies: dopamine receptor D2, factor Xa, and SARS-CoV-2 main protease. RESULTS AND CONCLUSIONS: Our results provide strong support for the hypothesis that indeed QSAR models frequently fail to predict ACs. We observe low AC-sensitivity amongst the evaluated models when the activities of both compounds are unknown, but a substantial increase in AC-sensitivity when the actual activity of one of the compounds is given. Graph isomorphism features are found to be competitive with or superior to classical molecular representations for AC-classification and can thus be employed as baseline AC-prediction models or simple compound-optimisation tools. For general QSAR-prediction, however, extended-connectivity fingerprints still consistently deliver the best performance amongs the tested input representations. A potential future pathway to improve QSAR-modelling performance might be the development of techniques to increase AC-sensitivity.

2.
Sci Rep ; 12(1): 14476, 2022 08 25.
Article in English | MEDLINE | ID: covidwho-2008302

ABSTRACT

Drug resistance caused by mutations is a public health threat for existing and emerging viral diseases. A wealth of evidence about these mutations and their clinically associated phenotypes is scattered across the literature, but a comprehensive perspective is usually lacking. This work aimed to produce a clinically relevant view for the case of Hepatitis B virus (HBV) mutations by combining a chronic HBV clinical study with a compendium of genetic mutations systematically gathered from the scientific literature. We enriched clinical mutation data by systematically mining 2,472,725 scientific articles from PubMed Central in order to gather information about the HBV mutational landscape. By performing this analysis, we were able to identify mutational hotspots for each HBV genotype (A-E) and gene (C, X, P, S), as well as the location of disulfide bonds associated with these mutations. Through a modelling study, we also identified a mutation position common in both the clinical data and the literature that is located at the binding pocket for a known anti-HBV drug, namely entecavir. The results of this novel approach show the potential of integrated analyses to assist in the development of new drugs for viral diseases that are more robust to resistance. Such analyses should be of particular interest due to the increasing importance of viral resistance in established and emerging viruses, such as for newly developed drugs against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Hepatitis B, Chronic , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA, Viral/genetics , Drug Resistance, Viral/genetics , Genotype , Hepatitis B virus/genetics , Humans , Mutation , SARS-CoV-2/genetics
3.
Nucleic Acids Res ; 50(3): 1484-1500, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1624985

ABSTRACT

The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14-nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14-nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3'-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14-nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12-nsp7-nsp8 (nsp12-7-8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14-nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Exoribonucleases/metabolism , Genome, Viral/genetics , Genomic Instability , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Exoribonucleases/antagonists & inhibitors , Genome, Viral/drug effects , Genomic Instability/drug effects , Genomic Instability/genetics , HIV Integrase Inhibitors/pharmacology , Isoindoles/pharmacology , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Organoselenium Compounds/pharmacology , RNA, Viral/biosynthesis , RNA, Viral/genetics , Raltegravir Potassium/pharmacology , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Virus Replication/drug effects , Virus Replication/genetics
4.
Chem Sci ; 12(41): 13686-13703, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1569290

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective 'peptibitors' inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.

SELECTION OF CITATIONS
SEARCH DETAIL